Gene delivery of Tim44 reduces mitochondrial superoxide production and ameliorates neointimal proliferation of injured carotid artery in diabetic rats.

نویسندگان

  • Takashi Matsuoka
  • Jun Wada
  • Izumi Hashimoto
  • Yanling Zhang
  • Jun Eguchi
  • Norio Ogawa
  • Kenichi Shikata
  • Yashpal S Kanwar
  • Hirofumi Makino
چکیده

Hyperglycemia induces the production of reactive oxygen species (ROS) from mitochondria, which is closely related to diabetic vascular complications. Mammalian translocase of inner mitochondrial membrane (Tim)44 was identified by upregulation in streptozotocin (STZ)-induced diabetic mouse kidneys; Tim44 functions as a membrane anchor of mtHsp70 to TIM23 complex and is involved in the import of preproteins with mitochondria-targeted presequence into mitochondrial matrix. The process is dependent on inner membrane potential (Delta psi) and ATP hydrolysis on ATPase domain of mtHsp70. Here, we show that the gene delivery of Tim44 using pcDNA3.1 vector (pcDNA3.1/TIM44) into the balloon injury model of STZ-induced diabetic rats ameliorated neointimal proliferation. ROS production, inflammatory responses, and cell proliferation in injured carotid artery were diminished by delivery of pcDNA3.1/TIM44. In vitro experiments using human aortic smooth muscle cells (HASMCs) revealed that the gene delivery of Tim44 normalized high-glucose-induced enhanced ROS production and increased ATP production, alterations in inner membrane potential, and cell proliferation. Transfection of siRNA and pcDNA3.1/TIM44 using HASMC culture clarified that import of antioxidative enzymes such as superoxide dismutase and glutathione peroxidase was facilitated by Tim44. Tim44 and its related molecules in mitochondrial import machinery complex are novel targets in the therapeutic interventions for diabetes and its vascular complications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-24 Attenuates Neointimal Hyperplasia in the Diabetic Rat Carotid Artery Injury Model by Inhibiting Wnt4 Signaling Pathway

The long-term stimulation of hyperglycemia greatly increases the incidence of vascular restenosis (RS) after angioplasty. Neointimal hyperplasia after vascular injury is the pathological cause of RS, but its mechanism has not been elucidated. MicroRNA-24 (miR-24) has low expression in the injured carotid arteries of diabetic rats. However, the role of miR-24 in the vascular system is unknown. I...

متن کامل

Antibody blockade of thrombospondin accelerates reendothelialization and reduces neointima formation in balloon-injured rat carotid artery.

BACKGROUND Remodeling of the extracellular matrix plays an important role during the pathogenesis of atherosclerosis and restenosis. The matrix glycoprotein thrombospondin-1 (TSP1) inhibits endothelial cell proliferation and migration in vitro. In contrast, TSP1 facilitates the growth and migration of cultured vascular smooth muscle cells. Accordingly, we investigated the hypothesis that admini...

متن کامل

Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery.

Neointimal proliferation occurring after vascular or endovascular procedures is a major complication leading to end-organ or limb ischemia. In experimental models, balloon injury has been shown to induce NAD(P)H oxidase to produce vascular superoxide anion (O2*-) production, which has been implicated in cell proliferation, but a direct link is still unclear. We postulated that inhibition of art...

متن کامل

Retraction: Resistin contributes to neointimal formation via oxidative stress after vascular injury.

Resistin may play a major potential role in vascular remodelling and may contribute to atherogenesis. However, the role of VSMC (vascular smooth muscle cell)-derived resistin in neointimal formation is not well understood. We hypothesize that endogenous resistin derived from VSMCs may contribute to neointimal formation after vascular injury. VSMCs from thoracic aorta of adult Wistar rats were c...

متن کامل

Alagebrium Chloride, a Novel Advanced Glycation End-Product Cross Linkage Breaker, Inhibits Neointimal Proliferation in a Diabetic Rat Carotid Balloon Injury Model

BACKGROUND AND OBJECTIVES Vascular perturbation induced by advanced glycation end-products (AGEs) leads to progression of atherosclerosis, plaque instability, and vascular inflammation, which results in a higher risk of neointimal proliferation. Here we investigated the inhibitory effect of alagebrium chloride (ALT-711), a breaker of AGE-based cross links, on neointimal proliferation in a carot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 54 10  شماره 

صفحات  -

تاریخ انتشار 2005